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Abstract 

Context: Maintaining thermal balance under heat-stress depends on appropriate 

increases in sweating and skin blood flow (cutaneous vasodilation). Given the multiple 

effects on nicotine on the body, it is unknown if sweating and cutaneous vasodilation 

are impaired, or possibly enhanced in smokers during heat stress.  Objective: To 

examine the effects of passive heating on thermoregulatory responses (i.e., sweating 

and cutaneous vasodilation) in smokers versus non-smokers. Design: 1 passive heat 

trial per subject. Patients or Other Participants: 14 male smokers (26 ± 7 y; 180.0 ± 

5.5 cm; 81.2 ± 20.7 kg; 3.2 ± 1.9 packs/week) and 12 male non-smokers (26 ± 8 y; 

172.4 ± 33.2 cm; 81.2 ± 20.7 kg) volunteered to participate. Intervention: Subjects 

were passively heated using a water perfused, tube-lined suit until core temperature 

(TC) increased 1.5°C from baseline.  At baseline and each 0.5°C TC increase, core and 

skin temperatures (Tsk) were assessed.  On an exposed forearm, skin blood flow 

(SKBF) via laser doppler flowmetry, local sweat rate (LSR), sweat gland output (SGO), 

and sweat gland activation (SGA). Data were analyzed via LabChart 8.0 and ImageJ. 

Statistical procedures were performed with SPSS v.20.0. Main Outcome Measures: 

SKBF, LSR, SGO, SGA, Tsk, and TC were all assessed via a two-way ANOVA. Sweat 

sensitivity, SKBF sensitivity, TC at sweat and SKBF onset, total body sweat-rate and 

percent body mass loss were all assessed via independent t-tests. Results: There were 

no significant differences in any measures between smokers and non-smokers (all 

p>0.05). TC and Tsk increased significantly (p<0.01) from baseline to 1.5°C TC 

increase (37.0 ± 0.3°C to 38.4 ± 0.2°C and 34.1 ± 0.5°C to 40.1 ± 0.4°C, respectively). 

Independent of group, SKBF, LSR, and SGO increased significantly (p<0.01) from 

baseline until TC increased 1.0°C (19.5 ± 13.6 to 65.3 ± 19.4% of max SKBF, 0.0 to 1.0 

± 0.5 mg∙cm-1∙min-1, and 0.0 to 9.2 ± 2.6 µg∙cm-1∙min-1, respectively). Other notable 

measures were TC at sweat onset (37.0 ± 0.3°C), total body sweat-rate (0.51 ± 0.21 

L•hr-1), and percent body mass loss (-0.5 ± 0.1%). Conclusion: Passive heating 

similarly affected vasodilatory and sweating parameters in smokers and non-smokers. 

Therefore in these relatively young, male, light smokers, thermoregulation is neither 

hindered nor enhanced. Funding: This project was funded by the College of Education 

and Health Professions and Research & Sponsored Programs at the University of 

Arkansas and the Arkansas Biosciences Institute, the major research component of the 

Arkansas Tobacco Settlement Proceeds Act of 2000. Word Count: 419 
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Chapter 1: Introduction 

As the climate continually becomes warmer around the world, heat stress is 

quickly becoming more of a concern across the population. Heat, whether generated 

actively through exercise or gained from external heat sources, causes the body’s core 

and skin temperature to rise. This heat storage causes an imbalance in the thermal 

equilibrium of the body. In order to maintain thermal equilibrium in the body, heat that is 

produced/gained must equal the amount of heat that is dissipated from the body. 

Dissipation of heat from the human body occurs primarily in two ways: evaporation of 

sweat and convective heat loss through increased skin blood flow.  

Sweating is a mechanism of thermoregulation which dissipates heat through 

evaporation of water from the skin. Sweating is controlled by the sympathetic nervous 

system, and acetylcholine is the main neurotransmitter associated with the sweating 

response. During the sweat response, acetylcholine is released from cholinergic 

sudomotor nerves and binds to muscarinic receptors on the sweat gland in response to 

changes in body temperature (Shibasaki & Crandall, 2011). Increased sweating may 

occur by increasing the output of sweat per gland and/or by increasing the number of 

glands activated. Sweating continues until the individual reaches their maximum sweat 

rate, after which no further increases in sweating will occur.  

Skin blood flow is another mechanism of thermoregulation. Heat is dissipated 

convectively with skin blood flow. The mechanism controlling this response is 

cholinergic nerve activation by the release of transmitters that have not been fully 

explained yet, but peptides involved include calcitonin gene-related peptide (CGRP), 

vasoactive intestinal polypeptide (VIP), and nitric oxide (NO) (Kellogg et. al., 1995), 
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(Shibasaki & Crandall, 2010). When faced with heat stress, adrenergic vasoconstriction 

and active vasodilation control blood flow in non-acral areas to alter skin blood flow. 

This means that there is a small increase in cutaneous blood flow due to a release of 

vasoconstrictor tone and an increase in cutaneous blood flow from active vasodilation 

(Inoue et. al., 1998). Increased skin blood flow allows for the removal of heat from the 

body by transporting the heat from the muscles and organs closer to the environment 

where heat can be released. Similar to sweating, each individual also possesses a 

maximum skin blood flow, after which no further increases in skin blood flow will occur. 

There are many factors which can alter the effectiveness of thermoregulation 

within the body, however it is unknown if smoking is one of them. One of the main 

chemicals in cigarettes is nicotine, which has been shown that it may stimulate or 

depress certain functions in the body (Kool et. al., 1993). One example of how it 

stimulates the body is that over the course of prolonged cigarette smoking, it has been 

shown that the sympathetic nervous system is activated 24 hours a day (Kilaru, 

Frangos, et al., 2001). Since the sympathetic nervous system is what controls sweating, 

it could be that the sweat response in smokers would be greater than that of non-

smokers. Conversely, nicotine in cigarettes causes norepinephrine to be released, 

which in turn increases cutaneous vasoconstriction (Kool et. al., 1993), and is 

associated with a drop in skin blood flow (Mundel & Jones, 2006). This may cause an 

impairment in thermoregulation because less heat will be released to the environment. 

The net effect on thermoregulation is unknown for smokers, especially when challenged 

with heat stress. Therefore, the purpose of this study is to examine how passive heat 

stress affects thermoregulation in smokers versus nonsmokers. 
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Chapter 2: Literature Review 

Introduction 

 During heat stress, the human body is constantly working to maintain a state of 

equilibrium. This equilibrium in the human body may only exist if the amount of heat that 

is actively generated by the body or externally placed on the body is equal to the 

amount of heat that the body is able to dissipate. As the body heats up, the core and 

skin temperature of the body rise steadily. This rise in core and skin temperature 

triggers the body to engage in compensatory responses in order to dissipate this heat 

from the body. Dissipation of this heat occurs in two primary ways: evaporative heat 

loss through the means of sweating and convective heat loss through an increase in 

skin blood flow. 

 

Basic Thermoregulation 

 

     Heat Stress 

 Increases in heat storage in the body are detected through increases in core 

temperature and skin temperature. As heat storage increases, efferent signals travel to 

the brain to alert the hypothalamus of the disturbances to the thermoregulatory 

equilibrium. The body responds convectively by dilating cutaneous blood vessels and 

evaporatively by preparing glands to secrete sweat (Shibasaki & Crandall, 2011). 

 

     Sweating 

Sweating is a mechanism of thermoregulation which dissipates heat through 

evaporation of water from the skin. Increased sweating may occur through an increase 
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in the output of sweat per gland and/or by increasing the number of glands activated. 

The frequency of sweat expulsions per minute has been shown to increase linearly with 

a rise in body temperature. 

Sweating is controlled by the sympathetic nervous system (Shibasaki & Crandall, 

2011). Efferent signals about core and skin temperature are relayed to the 

hypothalamus. When core and skin temperature exceed that which allows for 

equilibrium in the body, the hypothalamus begins a signal to the sweat gland (Shibasaki 

& Crandall, 2011). During this process, acetylcholine is released from cholinergic 

sudomotor nerves and enter the sweat gland and stimulates the muscarinic receptors of 

the clear cells. An influx of calcium ions occurs in the cells which allows for an influx of 

sodium ions as well, which ultimately allows for an influx of chloride ions through electric 

coupling. Through the process of osmosis, water enters the cell until the gradient is 

removed when the intracellular concentration threshold is achieved, and sodium-

potassium pumps are activated on the luminal membrane. Active transports of the 

sodium and chloride ions along with water is transported into the glandular lumen 

commences, which is the precursor of sweat. (Taylor & Machado-Moreira, 2013).  

The amount that a person is able to sweat depends on the “sensitivity” of the 

sweat glands. The more sensitive a person’s sweat glands are to heat, the high the 

ability of that person to effectively maintain thermoregulatory equilibrium. Once the 

process of sweating begins in an individual, it does so by slowly recruiting more sweat 

glands in order to increase the amount of sweat secreted (Taylor & Machado-Moreira, 

2013). Once the maximum number of glands has been recruited by the individual, the 
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amount of sweat secreted will then increase, allowing for a higher response to the 

thermoregulatory demands (Taylor & Machado-Moreira, 2013).  

High rates of sweating cannot be maintained by the body for extended periods of 

time. Reasons for the mechanism of a decrease in sweat is unknown, especially as 

internal body temperatures remain high (Shibasaki et. al., 2006). Theories include 

conditions such as dehydration, yet decreases in sweat rate still occur in individuals that 

are well hydrated (Shibasaki et. al., 2006). 

 

     Skin Blood Flow 

An increase in blood flow from the body core to the skin allows for the removal of 

heat from the body through the transportation of the heat from the muscles and organs 

closer to the skin through convection so that heat may be released. Adrenergic 

vasoconstriction and active vasodilation control blood flow in non-acral areas to alter 

skin blood flow. Adrenergic vasoconstriction is controlled by the secretion of 

norepinephrine from adrenergic nerves. During heat stress, the norepinephrine acts on 

postsynaptic receptors stopping the vasoconstriction (Kellogg et. al., 1995). This means 

that there is first a release of vasoconstrictor tone, and then an increase in cutaneous 

blood flow from active vasodilation (Inoue et. al., 1998). 

The body’s response to heat through an increase in skin blood flow is not uniform 

throughout the body. The greatest increase in skin blood flow is found on the thigh, 

followed by the forearm, and the lowest values on the back and chest. These 

differences are most likely due to the role of a co-transmitter that is assumed to be 

present, and also due to variations in sweat gland output (Smith et. al., 2013). The co-
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transmitter that is assumed to be present has not been fully identified or explained yet 

(Shibasaki & Crandall, 2010), but it may be different throughout the body which may be 

an explanation for why there are differences. Although specific co-transmitters have not 

been identified, suggested neuropeptides which might play a role in this include 

calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), and 

nitric oxide (NO) (Shibasaki & Crandall, 2011).  

During exercise, increased skin blood flow as a means of heat dissipation 

becomes more complicated than during passive heat stress. During passive heat stress, 

blood flow is not needed in the muscles or other inactive tissues, so skin blood flow can 

be maximally used as a way of dissipating heat. This isn’t true when exercise is 

occurring. During exercise, a redistribution of blood flow away from inactive tissues 

(including the skin) toward the active muscles takes place. These contracting muscles 

during exercise also produce heat as energy is expended, and since skin blood flow is 

supposed to aid in the dissipation of this heat, a competition exists between blood flow 

moving toward the active muscles and blow flow remaining at the skin to aid in heat 

dissipation (Kenney & Johnson, 1992). However, studies have shown that blood flow 

toward the muscles is not attenuated, meaning that cutaneous blood flow only reaches 

a percentage of it maximum (Savard et. al., 1985), meaning it is less efficient than 

during passive heat stress. 

 

Smokers 

 

       Sweating and Smoking 
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Over the course of prolonged cigarette smoking, it has been shown that nicotine 

causes the sympathetic nervous system to be activated 24 hours per day (Kilaru, 

Frangos, et al., 2001), possibly through a release of epinephrine caused by the nicotine 

(Kool et. al., 1993). Nicotine has the ability to stay in the body for long periods of time. 

Although half of the nicotine will be gone after two to three hours, the other half has the 

ability to stay within the body for twenty or more hours. This means that the nicotine 

may be slowly released from tissues during this time. Because nicotine causes the 

sympathetic nervous system to be activated, this is why it may stay at a heightened 

response 24 hours per day (Kilaru, Frangos, et. al., 2001).  

Because the sympathetic nervous system would be activated already, it may be 

hypothesized that sweat onset would occur sooner in smokers. Also, it may be 

presumed that there would be a greater release of acetylcholine, which would in turn 

cause heightened responses of muscarinic receptors that control sweating. This means 

that a smoker would have a greater thermoregulatory response, or a higher sweat 

sensitivity, therefore enhancing evaporative heat loss to allow for cooling (Taylor & 

Machado-Moreira, 2013). It is well known that other factors effect sweating (e.g., heat 

acclimatization, gender, training), meaning that individual sweat responses are 

modifiable. However, there are no known studies specifically examining differences in 

sweating between smokers and non-smokers.  

 

      Skin Blood Flow and Smoking 

Studies have shown that as more cigarettes are smoked during the day, skin 

blood flow continually decreases with each cigarette smoked (Gore & Chien, 1998). 
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Nicotine may cause a release of catecholamines, particularly norepinephrine (Kool et. 

al., 1993, Meekin et. al., 2000), which causes cutaneous vasoconstriction (Cryer et. al., 

1976, Gourley & Benowitz, 1997, Sorensen et. al., 2009). With each cigarette, more 

nicotine is allowed into the body which allows for more norepinephrine to be released. 

This allows for a continual steady increase in cutaneous vasoconstriction, which results 

in decreased skin blood flow. Because of this, it is possible that a smoker may have an 

impaired ability to increase skin blood flow during heat stress. This would result in an 

impaired thermoregulatory response, therefore a smoker may not be able to dissipate 

as much heat from the body as a non-smoker. Further review of literature shows that 

some have found no differences between smokers and non-smokers (Meekin et. al., 

2000), while others have observed differences (Meekin et. al., 2000). This may be partly 

due to how much the individual smokes, suggesting heavy smokers may have a 

tolerance for nicotine (Meekin et. al., 2000). Another alteration of function that nicotine 

causes is an impaired acetylcholine induced skin vasodilation which was found in young 

smokers. This is likely due to a diminished nitric oxide dependent vasodilation, which is 

similar to the effect of aging skin endothelial function (Fujii et. al., 2012) and would 

result impaired vasodilation.  

 

Summary 

Despite these mechanistic hypotheses of how smoking may influence 

thermoregulation, it is unknown whether or not smoking affects thermoregulation. As 

discussed above, nicotine effects may show increases in sweating, yet decreases in 

skin blood flow.  It is important to fully understand the thermoregulatory responses of 
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smokers because independent of smoking status, heat stress is a health problem that 

our society is facing today.  
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Chapter 3: Materials and Methods 

Subjects 

 Males age 18-49 were included in the study, including 14 male smokers (26 ± 7 

y; 180.0 ± 5.5 cm; 81.2 ± 20.7 kg; 3.2 ± 1.9 packs/week) and 12 male non-smokers (26 

± 8 y; 172.4 ± 33.2 cm; 81.2 ± 20.7 kg). Before participating, subjects read and signed 

informed consent documents approved by the University of Arkansas Institutional 

Review Board. This study was part of a larger study examining cardiovascular changes 

during passive heating.   

Pre-Trial Design 

Each participant refrained from exercise and alcohol twenty-four hours, food four 

hours and caffeine eight hours prior to each trial. Also prior to the trial, participants were 

asked to drink 500 mL of water the night before the trial, and another 500 mL of water 

two to three hours before the trial. Smokers were asked to smoke one hour prior to their 

trial time. 

Upon arrival at the laboratory, participants provided a small urine sample; from 

this sample, urine specific gravity was determined to ensure subjects started trials in a 

euhydrated state. Participants’ nude body mass (bladder emptied) was taken. Subjects 

also ingested a temperature sensor pill, the CorTempTM Core Body Temperature Sensor 

(HQ Inc.). 

Procedures 
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One heat trial was performed per subject. In this trial, participants were placed in 

a tube lined, water-perfused suit that covered the entire body except for the hands, feet, 

head and neck. They were then asked to place a rain suit over the top of the tube lined 

suit. Once that was complete, the participant was asked to lie in a supine position for 30 

minutes while water at 34 °C was run through the suit. After the 30 minutes was 

complete, baseline measurements of core temperature, mean skin temperature, and 

skin blood flow were taken of the participant. Once the baseline measurements were 

complete, the heating began by running 49°C water through the suit. Measurements 

were taken when core temperature increased (from baseline) by 0.5°C, 1.0°C, and 

1.5°C. Measures included core temperature, sweat gland activation, local sweat rate, 

and skin blood flow (see below). Once the heating phases were complete, cold water 

was run through the suit to begin the cool-down phase. In order to obtain maximal skin 

blood flow, local heating to 42°C began for thirty minutes. After the cool-down phase, 

core temperature and skin blood flow were measured, and the test was complete.  

Measurements  

Skin temperature was assessed by thermocouples (2000 Thermocouple Meter) 

attached to the right side of the body at the lateral subdeltoid, pectoral, lateral calf, and 

quadriceps. Heart rate (Polar, Inc.) was assessed via a heart rate monitor (SunTech 

Tango; Raleigh, NC). Blood pressure was measured by an electrosphymomanometer 

(SunTech Tango; Raleigh, NC) on the participant’s left arm.  

After wiping away all the dripping sweat from the area, sweat gland activation 

was measured by placing a 0.442     circular piece of iodine-impregnated paper on the 

right forearm for ~3 seconds and then removed for analyzing. This measure was 
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recorded 2-3 times per time point. The exact spot was marked and used for each 

measurement. Each of the circles were taped to a sheet of paper, and immediately 

scanned into a computer at the end of the trial. Images were saved as “tif” files for data 

analysis via ImageJ.  

Local sweat rate was measured by placing a small capsule on the right forearm 

which was completely adhered to the skin. Dry nitrogen gas from a Radnor tank at a 

constant temperature flowed through the capsule at 300 ml/min. The nitrogen gas 

allowed for zero humidity within the capsule which in turn meant that any increases in 

humidity were due to the subject’s sweat. This information was used to calculate local 

sweat rate. This equation to calculate local sweat rate is listed below: 

                  

  
   

   
   

               

    
 

Skin blood flow (moorLAB Laser Doppler Perfusion Monitor and a PF 5020 Temp 

Unit) was measured through the use of a probe connected to a monitor which was 

placed on the anterior side of the right forearm. This allowed for skin blood flow to be 

measured via the Doppler effect, where laser light was backscattered from red blood 

cells moving in the cutaneous microcirculation (Holloway & Watkins, 1977). 

 

Data and Statistical Analysis 

 Data were analyzed via LabChart 8.0 and ImageJ. Skin Blood Flow, Mean Skin 

Temp, Local sweat rate, and Core temperature measurements were each taken at each 
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time point, and is an average of the measurements when the first and second blood 

pressures were taken.  

Local heating for maximum skin blood flow was made by taking a 30 second time 

at the maximum skin blood flow. Percent of maximum skin blood flow was calculated via 

the following equation: 

      
                           

                                         
. 

Skin blood flow onset was measured by pinpointing visually when the exact 

increase began, and core temperature at this time point was also recorded. Skin blood 

flow maximum during passive heat stress was measured by pinpointing visually when 

the steady increase plateaued, and core temperature at this time point was also 

recorded. Skin blood flow sensitivity was determined by calculating the change in skin 

blood flow divided by the change in core temperature between the visually pinpointed 

onset and the visually pinpointed plateau. 

Local sweat rate onset was measured by pinpointing visually when the exact 

increase began, and the core temperature at this time point was also recorded. Local 

sweat rate maximum was measured by pinpointing visually when the steady increase 

plateaued via excel graphs of the data, and the core temperature at this point was also 

recorded. The excel graphs were constructed by copying and pasting from Lab Chart 

8.0 to Microsoft Excel the data of local sweat rate and core temperature. A simple line 

graph was constructed independently by two individuals with core temperature as the 

independent variable and local sweat rate as the dependent variable. Lines of best fit 

were visually placed on the graph in order to pinpoint the plateau. For those values that 
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differed, plateau was visually assessed on Lab Chart 8.0, and a value was agreed upon 

by two individuals. Sweat sensitivity was determined by calculating the change in local 

sweat rate divided by the change in core temperature between the visually pinpointed 

onset and the visually pinpointed plateau.  

 Sweat gland activation was determined via the measurements calculated by 

ImageJ. Two to three circles were analyzed per time point. This was done by opening 

each separate image of the circles in ImageJ, using the ‘find edges’ option, setting the 

image to 8-bit grayscale by clicking ‘8-bit’ and black and white by clicking ‘make binary’, 

and clicking ‘analyze particles’. To set limits, upper and lower size limits were input via 

the prompted screen, which is the minimum and maximum size that is allowed for a dot 

to be counted. Below the limits, the boxes that were checked include: display results, 

clear results, exclude on edges, record starts. Also, ‘outlines’ was selected under the 

‘show’ box (Gagnon et. al., 2012). Once this was complete, ImageJ generated the 

number of sweat glands per circle, and the average number of sweat glands activated 

was recorded. Sweat gland output was calculated by dividing local sweat rate of the 

adjacent site by sweat gland activation at each time point.  

 Data were assessed for outliers via Microsoft Excel. Outliers included any value 

that was outside two standard deviations of the mean value for each measurement. All 

outliers were assessed by a second individual to ensure the data were accurate before 

statistical procedures began. 

Statistical procedures were performed with SPSS v.20.0. Skin blood flow, local 

sweat rate, sweat gland output, sweat gland activation, skin temperature, and core 

temperature were all assessed via a two-way ANOVA. This two-way ANOVA measured 
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the differences in the repeated measures from each time point between smokers and 

non-smokers. Sweat sensitivity, skin blood flow sensitivity, core temperature at sweat 

and skin blood flow onset, total body sweat-rate and percent body mass loss were all 

assessed via independent t-tests. The independent t-tests measured the different 

between smokers and non-smokers at each of the points listed. Means, standard 

deviations, and levels of significance were all recorded. All values with a p-value of less 

than 0.05 were considered significant. 
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Chapter 4: Results 

Measures of Body Temperature 

No significant differences were found in any measures between smokers and 

non-smokers (all p>0.05). In all subjects, core and skin temperature increased 

significantly (p<0.01) from baseline to 1.5°C increase (37.0 ± 0.3°C to 38.4 ± 0.2°C and 

34.1 ± 0.5°C to 40.1 ± 0.4°C, respectively). Table 1 contains core and mean skin 

temperature values of smokers and non-smokers for each time point of the trial. 

Table 1. Measures of Thermometry 

 

 

Measures of Sweat  

No significant differences were found in any sweat measures between smokers 

and non-smokers (all p>0.05). Independent of group, local sweat rate and sweat gland 

output increased significantly (p<0.01) from baseline until core temperature increased 

1.0°C (0.0 to 1.0 ± 0.5 mg∙cm-2∙min-1, and 0.0 to 9.2 ± 2.6 μg∙cm-2∙min-1, respectively). 

No further increases in local sweat rate and sweat gland output were observed from 

1.0°C to 1.5°C. With a p-value of 0.588, sweat gland activation did not significantly 

Measurement Group Baseline 0.5 °C 1.0 °C 1.5 °C

Smokers 37.1 ± 0.2 37.4 ± 0.2 37.9 ± 0.2 38.4 ± 0.2

Non-Smokers 37.0 ± 0.3 37.3 ± 0.3 37.8 ± 0.3 38.3 ± 0.2

Smokers 34.3 ± 0.4 39.2 ± 0.4 39.9 ± 0.4 40.3 ± 0.4

Non-Smokers 33.9 ± 0.5 38.6 ± 0.6 39.5 ± 0.4 40.0 ± 0.4

Core Temperature (°C )

Mean Skin Temperature (°C )
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increase with heating from 0.5°C to 1.5°C (115.5 ± 27.8 to 112.0 ± 15.9 gland∙cm-2), but 

did increase from baseline to 0.5°C (0.0 to 112.0 ± 15.9 glands∙cm-2). Other notable 

measures of sweat were core temperature at sweat onset (smokers: 37.0 ± 0.2°C; non-

smokers: 37.0 ± 0.3°C), sweat sensitivity (smokers: 0.9 ± 0.3 cm2/min/°C increase; non-

smokers: 0.9 ± 0.3 cm2/min/°C increase), total body sweat-rate (smokers: 0.52 ± 0.24 

L·hr-1; non-smokers: 0.50 ± 0.18 L·hr-1), and percent body mass loss (smokers: -1.5 ± 

0.4%; non-smokers: -1.5 ± 0.5%). Table 2 contains local sweat rate, sweat gland output, 

and sweat gland activation values of smokers and non-smokers for each time point of 

the trial. 

Table 2. Measures of Sweat 

  

 

Measures of Skin Blood Flow 

No significant differences were found in any measures between smokers and 

non-smokers (all p>0.05). Independent of group, skin blood flow increased significantly 

(p<0.01) from baseline until core temperature increased 1.0°C (19.5 ± 13.6 to 65.3 ± 

19.4% of maximum skin blood flow). No further increases in skin blood flow were 

observed from 1.0°C to 1.5°C. Other notable measures of skin blood flow were core 

Measurement Group 0.5 °C 1.0 °C 1.5 °C

Smokers 1.1 ± 0.3 1.2 ± 0.2 1.0 ± 0.5

Non-Smokers 0.9 ± 0.3 1.2 ± 0.2 1.2 ± 0.3

Smokers 8.6 ± 3.4 9.6 ± 3.4 9.2 ± 2.6

Non-Smokers 11.6 ± 9.1 14.4 ± 8.7 15.6 ± 11.6

Smokers 122.5 ± 27.0 116.4 ± 25.6 117.9 ± 16.9

Non-Smokers 110.8 ± 27.0 112.8 ± 16.2 108.1 ± 14.6

Sweat Gland Ouput (μg∙cm^-2∙min^-1)

Sweat Gland Activation (glands∙cm^-2)

Local Sweat Rate (mg∙cm^-2∙min^-1)
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temperature at skin blood flow onset (smokers: 37.0 ± 0.2°C; non-smokers: 37.0 ± 

0.3°C) and skin blood flow sensitivity (smokers: 32.2 ± 16.4 % of max/°C increase; non-

smokers: 39.1 ± 10.7 % of max/°C increase). Table 3 contains skin blood flow values of 

smokers and non-smokers for each time point of the trial. 

Table 3. Measures of Skin Blood Flow 

 

 

 

 

 

 

 

 

 

 

 

 

  

Measurement Group Baseline 0.5 °C 1.0 °C 1.5 °C

Smokers 21.3 ± 12.1 50.0 ± 19.5 64.7 ± 20.4 68.3 ± 18.9

Non-Smokers 18.0 ± 15.1 48.7 ± 17.2 65.9 ± 19.1 71.0 ± 19.7Skin Blood Flow (% of max SKBF)
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Chapter 5: Discussion 

The purpose for conducting this study was to compare thermoregulation in 

smokers versus non-smokers during passive heat stress. The main findings from this 

study are that there is no difference in the body’s thermoregulatory responses between 

smokers and non-smokers. This means that smoking does not impair or enhance the 

body’s ability to thermoregulate during passive heat stress. 

In regards to the overall effects of passive heating, responses were as expected. 

The hypothesis was that as core and skin temperature would steadily rise and that skin 

blood flow and sweating would also increase. Since core and temperature drive the 

responses of the body to sweat and cutaneously vasodilate (Shibasaki & Crandall, 

2011), increases in local sweat rate, sweat gland output, sweat gland activation, and 

local sweat rate were all important outcome variables. 

 For sweating, it was hypothesized that the sweat response would be enhanced in 

smokers compared to non-smokers. Because the nicotine that is found in cigarettes 

may keep the sympathetic nervous system active for up to 24 hours (Kilaru, Frangos, et 

al., 2001), it would seem that the sweat response would be able to come on faster and 

that the sensitivity would be higher. However, according to Table 2, the results indicate 

that there are no differences between smokers and non-smokers in any aspect of the 

sweat response.  

 There are a variety of factors which may have caused this outcome in the study. 

The first factor to be considered is the chemicals in the cigarettes. Current literature is 

limited to a study of nicotine, but cigarettes contain several more chemicals than just 
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nicotine. Therefore, other unknown chemical changes may have been taking place in 

the body as well. Another factor relating to this topic is age and level of physical fitness. 

Both of these factors affect the way the body sweats, so differences in age and level of 

physical fitness may have played a role in the ability of the body to sweat more than the 

cigarettes effect on the sweat response. Attempts to combat this difference were made 

by matching age and level of physical fitness of participants. One thing that may not 

have been matched, however, is heat acclimatization. Heat acclimatization can cause 

similar changes in sweat responses (higher sweat capacity) (Fox et. al., 1964) to 

nicotine. 

 With skin blood flow, it was hypothesized that the response would be lower in 

smokers in comparison to non-smokers. As previously discussed, skin blood flow 

decreases steadily with each cigarette that is smoked (Gore & Chien, 1998). However, 

no differences were recorded between smokers and non-smokers in any aspect of skin 

blood flow. Others have shown no difference in skin blood responses between smokers 

and non-smokers (Meekin et. al., 2000). However, differences have been observed 

between light smokers and heavy smokers. This may be a result of heavy smokers 

having a tolerance to nicotine (Meekin et. al., 2000). 

 The main effects of nicotine on skin blood flow is that it allows for a continual 

release of norepinephrine, which in turn allows for a continual increase in cutaneous 

vasoconstriction, therefore decreasing skin blood flow (Kool et. al., 1993). However, 

passive heating may have offset the decreases generally seen from nicotine. High skin 

temperature during passive heating leads to massive vasodilation. Thus the effects of 

nicotine on vasoconstriction may have been overridden/overwhelmed.  Since a 
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difference in smokers and non-smokers was not observed in this study, there may be a 

variety of factors to be considered. One factor to be considered again is other chemicals 

existing in the cigarettes. Another factor to be looked at is the design of the study. In 

one study looking at the differences in cutaneous blood flow during heating, it was found 

that age has a larger effect than smoking on cutaneous blood flow responses (Avery et. 

al., 2009). At the same time, this study did see differences in cutaneous blood flow 

between smokers and non-smokers, yet the design of the study was different. Heating 

was applied in the aforementioned study using only a laser on the forearm (Avery et. al., 

2009), yet the current study used passive heat stress over the entire body, not just a 

laser on the forearm.  

 In conclusion, the overall finding of the study is that there are no differences in 

the body’s thermoregulatory responses between smokers and non-smokers. 

Implications of the study indicate that cigarettes, particularly the nicotine in cigarettes, 

does not impair or enhance the body’s ability to thermoregulate during passive heat 

stress.  

 Further research should be conducted on younger smokers where is age range 

is not so much a factor in the study. Further research should also be conducted in 

relation to other chemicals which exist in cigarettes, and also comparing light and heavy 

smokers. 

 

 

 



www.manaraa.com

 24 

Acknowledgements: 

This study was funded by the SURF Research Grant, the College of Education 

and Health Professions, and the Arkansas Biosciences Institute, the major research 

component of the Arkansas Tobacco Settlement Proceeds Act of 2000. 

It gives me great pleasure in acknowledging the support of my professor, Dr. 

Matthew S. Ganio, whom I have learned so much from through countless hours of 

mentoring and supporting me and the work of this project. I also would like to thank my 

professors Dr. Tyrone Washington, for his input and guidance on this thesis, and Dr. 

Fort for her teaching and mentorship through my undergraduate career. I would also like 

to acknowledge Nicole Moyen, who guided and mentored me through every step of this 

thesis. Finally, I owe gratitude to my peers, Jenna Burchfield, Melina Gonzalez, and 

Matthew Tucker, who faithfully assisted me throughout the experimental trials and 

duration of this process. 

 

 

 

 

 

 

 

  



www.manaraa.com

 25 

References 

1. Amano, T., Koga, S., Inoue, Y., Nishiyasu, T., Kondo, N. (2013). 

Characteristics of sweating responses and peripheral sweat gland function during 

passive heating in sprinters. Eur J Appl Physiol, 113, 2067-2075. 

2. Avery, M., Voegell, D., Byrne, C., Simpson, D., Clough, G. (2009). Age and 

cigarette smoking are independently associated with the cutaneous vascular 

response to local warming. Informa UK Ltd, 16: 725-734. 

3. Cryer P., Haymond M., Santiago J., et al. (1976). Norepinephrine and 

epinephrine release and adrenergic mediation of smoking associated 

hemodynamic and metabolic events. N Engl J Med, 295, 573. 

4. Fox, R., Goldsmith, R., Hampton, I., Lewis, H. (1964). The nature of the 

increase in sweating capacity produced by heat acclimatization. J. Physiol, 171, 

368-376. 

5. Fujii, N., Reinke, M., Brunt, V., Minson, C. (2012). Impaired acetylcholine-

induced cutaneous vasodilation in young smokers: roles of nitric oxide and 

prostanoids. Am J Physiol Heart Circ Physiol, 304, H667-H673. 

6. Gagnon, D., Ganio, M., Lucas, R., Pearson, J., Crandall, C., Kenny, G. 

(2012). Modified iodine-paper technique for the standardized determination of 

sweat gland activation. J Appl Physiol, 112(8), 1419-1425. 

7. Gore, A., & Chien, Y. (1998). The Nicotine Transdermal System. Clinics in 

Dermatology, 16(5), 599-615. 

8. Gourlay S., & Benowitz N. (1997). Arteriovenous differences in plasma 

concentration of nicotine and catecholamines and related cardiovascular effects 



www.manaraa.com

 26 

after smoking, nicotine nasal spray, and intravenous nicotine. Clin Pharmacol 

Ther, 62, 453. 

9. Holloway, G. and Watkins, D. (1977). Laser Doppler measurement of 

cutaneous blood flow. J. Invest Dermatol, 69(3), 306-9. 

10. Inoue, Y., & Shibasaki, M. (1996). Regional differences in age-related 

decrements of the cutaneous vascular and sweating responses to passive 

heating. Eur J Appl Physiol, 74, 78-84. 

11. Inoue, Y., Shibasaki, M., Hirata, K., Araki, T. (1998). Relationship between skin 

blood flow and sweating rate, and age related regional differences. Eur J Appl 

Physiol, 79, 17-23. 

12. Kellog, D.W., Pergola, P.E., Piest, K.L., Kosiba, W.A., Crandall, C.G., 

Grossmann, M., Johnson, J.M. (1995). Cutaneous active vasodilation in 

humans is mediated by cholinergic nerve cotransmission. Circulation Research, 

77, 1222-1228 

13. Kenney, W.L., & Johnson, J.M. (1992). Control of skin blood flow during 

exercise. Official Journal of the American College of Sports Medicine, 24(3), 303-

312. 

14. Kenney, W.L., Morgan, A.L., Farquhar, W.B., Brooks, E.M., Pierzga, J.M., 

Derr, J.A. (1997). Decreased active vasodilator sensitivity in aged skin. Am J 

Physiol, 272, H1609-1614. 

15. Kilaru, S., Frangos, S., Chem, A., Gortler, D., Dhadwal, A., Araim, O., et al. 

(2001). Nicotine: A Review of Its Role in Atherosclerosis. American College of 

Surgeons, 193(5), 538-546. 



www.manaraa.com

 27 

16. Kool, M., Hoeks, Al, Boudier, H., Reneman, R. (1993). Short and long term 

effects of smoking on arterial wall properties in habitual smokers. JACC, 22(7), 

1881-1886. 

17. Meekin, T., Wilson, R., Scott, D., Ide, M., Palmer, R. (2000). Laser Doppler 

flowmeter measurement of relative gingival and forehead skin blood flow in light 

and heavy smokers during and after smoking. J Clin Periodontal, 27, 236-242. 

18. Mundel, T., Jones, D. (2006). Effect of transdermal nicotine administration on 

exercise endurance in men. Exp Physiol, 91(4), 705-713. 

19. Savard GK, Nielsen B, Laszczynska J, Larsen BE, Saltin B. (1985). Muscle 

blood flow is not reduced in humans during moderate exercise and heat stress. J 

Appl Physiol, 64(2), 649-57. 

20. Shibasaki, M., & Crandall, C. (2010). Mechanisms And Controllers Of Eccrine 

Sweating In Humans. Frontiers in Bioscience, S2(1), 685-696. 

21. Shibasaki, M., Wilson, T., Crandall, C. (2006). Neural control and mechanisms 

of eccrine sweating during heat stress and exercise. J. Appl Physiol, 100, 1692-

1701. 

22. Smith, C., Kenney, W., Alexander, L. (2013). Regional relation between skin 

blood flow and sweating to passive heating and local administration of 

acetylcholine in young, healthy humans. Am J Physiol Regul Integr Comp 

Physiol, 304, R566-R573. 

23. Sorensen, L., Jorgensen, S., Petersen, L., Hemmingsen, U., Bulow, J., Loft, 

S., Gottrup, F. (2009). Acute effects of nicotine and smoking on blood flow, 



www.manaraa.com

 28 

tissue oxygen, and aerobe metabolism of the skin and subcutis. Journal of 

Surgical Research, 152, 224-230. 

24. Taylor., & Machado-Moreira. (2013). Regional variations in transepidermal 

water loss, eccrine sweat gland density, sweat secretion rates and electrolyte 

composition in resting and exercising humans. Extreme Physiology & Medicine, 

2(4), 1-29. 

 

 


	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	8-2012

	Effects of Passive Heat Stress on Thermoregulation in Smokers versus Non-Smokers
	Hannah M. Anderson
	Recommended Citation


	tmp.1446046926.pdf.L8eq4

